Пресс-центр
Последние события и самая актуальная информация о деятельности Фонда инфраструктурных и образовательных программ.
11 апреля 2019

Может ли электричество стать полностью беспроводным? Физик Александр Кунцевич о том, как передается электричество и можем ли мы перейти на беспроводные способы передачи электроэнергии

Как передается электроэнергия? Сколько электричества потребляет человек? Можем ли мы обходиться без проводов? В проекте «Мир вещей. Из чего сделано будущее» совместно с Фондом инфраструктурных и образовательных программ (ФИОП) рассказываем о последних открытиях и перспективных достижениях науки о материалах.

Провода окружают нас повсюду и используются для передачи информации и энергии. Если в передаче информации беспроводные технологии развиваются семимильными шагами, то с энергией дело обстоит по-другому. Для распространения энергии на расстояние можно использовать разные способы. Например, перевозку бензина в бензовозе или запуск ядерной боеголовки тоже можно считать передачей энергии, причем беспроводной. Но составить конкуренцию электроэнергии по удобству и универсальности эти способы, конечно, не могут.

Электричество, как известно, производится на электростанциях: тепловых, атомных, ГЭС и так далее. Энергия, генерируемая электростанциями, идет по проводам к потребителям (населению и промышленности), где расходуется на полезную работу, производство тепла и излучения. Полезная работа — это, например, работа электродвигателей в компрессоре холодильника или движение троллейбуса. Производством тепла можно считать нагрев воды в чайнике. Количество энергии, потребляемое в единицу времени, принято называть потребляемой мощностью и измерять в ваттах. Скажем, электрочайник потребляет примерно 2000 Вт (или 2 кВт), а мобильный телефон при зарядке — меньше 10 Вт.

Конечно, на передачу информации тоже тратится энергия. Например, передатчик на вышке сотовой связи потребляет порядка 1 кВт. Но это все-таки гораздо меньше того, что расходуется промышленностью и домохозяйствами.

Есть простая формула (закон Джоуля—Ленца), которую изучают в школе: Р = U⋅ I, где P — потребляемая мощность, U — напряжение между проводами (измеряется в вольтах), а I — сила тока (сколько заряда проходит по проводу за единицу времени, измеряется в амперах).

Как известно, напряжение в розетке — 220 В. Когда мы включаем в нее чайник мощностью 2 кВт, потребляемый им ток, исходя из формулы, равен примерно 10 А. Теперь представим большой город, размером с Санкт-Петербург, в котором живут миллион семей, и каждая из них потребляет в среднем те же 10 А. Так получается не потому, что люди круглые сутки кипятят чайник, а потому, что, например, холодильник, освещение, компьютер, кондиционер, стиральная машина в среднем тоже постоянно подключены к сети: что-то включается и выключается в течение дня. Тогда для обеспечения электричеством населения миллионного города потребуется мощность, равная 2 ГВт, двум гигаваттам (2 кВт х 1 000 000 = 2 ГВт). Примерно такой мощностью обладают два энергоблока атомной электростанции. Промышленность и электротранспорт только увеличат это число.

Возникает вопрос: как обеспечить необходимую мощность для потребителей? Без проводов доставить ее не получится. Действительно, если передавать энергию без проводов, значит, надо передавать электромагнитное излучение, то есть необходимо поставить антенну (или лазер, если использовать оптический или инфракрасный диапазон), которая энергию будет испускать, и какой-то приемник, который будет энергию принимать. Проблема в том, что любой источник излучения не сможет направить электромагнитную волну строго на приемник из-за дифракции (явления, заключающегося в том, что свет — волна и всегда будет стремиться расходиться в разные стороны, как круги на воде).

Волна всегда будет разбегаться в стороны. И если приемник находится за сотни километров от передатчика, то он примет только маленькую часть всей энергии, а вся остальная энергия пролетит мимо. Поэтому ни на какой разумной частоте эффективная передача энергии без провода на большие расстояния не осуществима. Другая причина, почему такая передача не получится, — взаимодействие энергетического луча с воздухом, пылью и биологическими объектами. Все живое, что попадет под действие луча мощностью 1 ГВт, мгновенно зажарится или даже испарится.

Значит, мы должны передать в нашем условном городе 2 ГВт электроэнергии с помощью проводов. Что ограничивает ток, который можно пустить по проводу? Разогрев самого провода: тонкий и толстый провода от одинакового тока будут по-разному разогреваться. К маленькой лампочке изготавливают тонкий медный провод, потому что лампочка потребляет маленький ток, а к электрочайнику — толстый провод, потому что по нему течет большой ток. То, какой ток вы можете пропустить, определяет электрическое сопротивление, то есть в конечном счете толщину провода. Если попытаться пропустить большой ток через тонкий провод, то провод нагреется или даже сгорит.

У электрочайника, скажем, провод имеет сечение 1,5–2,5 квадратных миллиметра (1 квадратный миллиметр медного провода может нести ток около 10 А). Разумеется, для города, в котором миллион таких чайников, никто не будет изготавливать провод диаметром миллион квадратных миллиметров: так никаких запасов металлов на Земле не хватит. Для этого люди поступают по-другому: поскольку мощность — это ток, умноженный на напряжение, то для передачи большой мощности можно поднять напряжение, тогда не надо изготавливать совсем уж толстый провод. От электростанции строятся линии электропередачи, напряжение в которых уже не 220 В, а минимум 220 кВ (бывают до 1 МВ). И провод там не 1,5 квадратных миллиметра, а 300. Он способен нести ток около 500 А. Если умножить 500 А на 220 кВ, мы получим примерно одну двадцатую от того, что будет потреблять наш город. Есть, конечно, тонкости (например, используется трехфазный ток), но вывод такой, что для питания крупного города придется построить примерно десять высоковольтных линий электропередачи среднего размера. Если посмотреть на крупные города, то так примерно и есть.

Однако нужно понимать, что эти линии электропередачи сделаны из меди или алюминия со сталью, которые в любом случае нагреваются. Соответственно, будут потери энергии, и чем длиннее линия электропередачи, тем больше потери, так как у проводов есть сопротивление. Потери могут доходить до 10–30%. Получаемое тепло идет на разогрев окружающего пространства. Одним из вариантов исключить потери было бы использование сверхпроводящего кабеля.

Сверхпроводники

Явление сверхпроводимости было открыто больше ста лет назад. Оно проявляется в том, что вещество теряет сопротивление и может переносить ток без потерь. Большинство известных сверхпроводящих материалов становятся такими при температурах, близких к температуре жидкого гелия (-269°C, или примерно 4 К) или ниже. Но существуют также высокотемпературные сверхпроводники (ВТСП), которым достаточно более доступной температуры жидкого азота — -196°C, или 77 К.

Однако сверхпроводника, работающего при комнатной температуре, еще нет. Если бы мы его получили, передача тока без потери напряжения стала бы возможной. Это была бы очень большая экономия для человечества. Можно было бы, например, построить много гидроэлектростанций в Сибири и передавать электроэнергию в Москву без потерь.

В конце 1990-х — начале 2000-х годов люди научились не просто синтезировать высокотемпературные сверхпроводники, но и создавать из них провода, которые работают при температуре жидкого азота (-196°C) и могут, несмотря на малые размеры, нести большой ток — сотни и тысячи ампер.

В чем проблема внедрения этих проводов? Во-первых, как уже было сказано, провод требует жидкого азота. Во-вторых, этот провод дорогой, гораздо дороже меди. Тем не менее пробные линии с такими сверхпроводниками уже существуют — например, в Нью-Йорке или Германии. Работы ведутся во многих странах, и в России в том числе.

Линия из сверхпроводника должна находиться в трубе с двойными стенками (термос-трубе), в которой залит жидкий азот. По мере того как азот испаряется (идеальных термосов не бывает), его приходится доливать. То есть такую линию дорого эксплуатировать: приходится строить рядом маленький завод по производству жидкого азота. С другой стороны, она хороша тем, что на ней не происходит потерь напряжения. Более того, через современный сверхпроводящий кабель можно пропустить ток в тысячи и даже десятки тысяч ампер, а это значит, что для передачи той же мощности напряжение можно уменьшить. Обычная линия электропередачи из-за больших напряжений очень большая, и вокруг нее всегда есть полоса отчуждения — пространство, где нельзя строить, поселяться, вести хозяйственную деятельность. В сверхпроводящей линии напряжение меньше, и тогда необходимость в полосе отчуждения пропадет. Следовательно, эта земля может быть использована, что экономически может быть выгоднее, даже несмотря на затраты на азот.

Поднять температуру сверхпроводников до комнатной пока не удается. Отчасти дело в том, что эти материалы довольно сложные и содержат в себе 4–5 элементов, например YBa2Cu3O7−x или Bi2Sr2Can−1CunO2n+4+x. У материала есть кристаллическая решетка, в которой разные элементы должны стоять в идеальном порядке. Создать такой материал очень непросто, еще сложнее — понять, какой из элементов нужно заменить и на какой именно, чтобы материал был сверхпроводящим при достаточно высокой температуре.

Производство сверхпроводящих проводов из этих материалов — отдельный и довольно сложный процесс, на освоение которого с момента открытия ВТСП у человечества ушло около двадцати лет. Дело в том, что в таком проводе на протяжении его многокилометровой длины должна сохраняться кристаллическая ориентация сверхпроводника, то есть определенные атомы должны стоять друг за другом вдоль многокилометровой длины провода. Чтобы этого добиться, приходится делать провод многослойным, при этом толщина самого ВТСП составляет ничтожную часть. Лидером в производстве такого сверхпроводящего провода в настоящее время является компания Superpower (США), но также производство освоено во многих странах, в том числе и в России.

Беспроводная передача энергии

И все-таки беспроводная передача энергии существует и используется — например, беспроводная зарядка для телефона. На самом деле это не совсем беспроводное устройство: оно представляет собой трансформатор — прибор, в котором энергия передается по магнитопроводу. Такая зарядка работает только в том случае, когда две поверхности — заряжающее и заряжаемое устройства, содержащие внутри элементы из феррита (магнитопроводящего материала), — почти касаются друг друга. Если вы отнесете заряжаемое, никакая беспроводная зарядка работать не будет, потому что магнитное поле очень быстро убывает с расстоянием. Конечно, зарядку на небольшом расстоянии можно было бы осуществить через антенну или, например, лазер. Но тут, помимо уже упомянутых выше проблем, добавляется то, что существующие на сегодняшний день приемники излучения вроде солнечной батареи обладают довольно низким КПД. Таким образом, возможности беспроводной передачи энергии очень ограниченны.

Источник: Постнаука
Опубликовано: 10 апреля 2019
Автор: Александр Кунцевич, к.ф.-м.н., старший научный сотрудник ФИАН, доцент Факультета Физики НИУ ВШЭ